
AST326 Lab #6: Determining Orbital Parameters of 26 Proserpina

Aaryan Thusoo

April 9th 2024

ABSTRACT

Understanding the orbits of celestial bodies is fundamental in astronomy. In this laboratory

report, we employ Laplace’s method and Newtonian iteration to derive the six orbital parameters

necessary for characterizing the orbit of an object in the solar system. Our analysis reveals key

parameters defining the orbit’s shape: the semi-major axis a = 2.57+0.07
−0.07 AU and eccentricity

e = 0.09+0.02
−0.02. Additionally, we determine the angles governing the 3D orientation of the orbit:

inclination i = 3.55+0.57
−0.57°, longitude of ascending node Ω = 46.9+8.6

−12.0°, and argument of perihelion

ω = 210.9+15.9
−14.7°. Furthermore, we establish a reference date in Julian Days τ = 2455258+125

−131.

Using four observation dates, we illustrate the process of parameter determination, reserving one

for validation. Our computed position for 26 Proserpina on January 26th, 2012 yields a right

ascension of 75.7°and a declination of 29.9°. This investigation enhances our comprehension of

orbital dynamics and underscores the precision achievable through mathematical modeling and

observational analysis in celestial mechanics.

1. Introduction

Everything in the night sky is moving whether it is noticeable on nightly or century intervals which

scientists study to determine physical attributes of these celestial objects. Many celestial bodies, including

planets, asteroids, and comets, traverse not in linear paths but in elliptical orbits around larger masses,

typically stars. Orbits are the paths object follow repeatedly around another object. These orbits represent

the repeated trajectories that objects trace around their central bodies. Keplerian orbits, named after

Johannes Kepler, are the precise paths objects repetitively trace around central bodies. Our Earth is the

best example as it orbits around the Sun in a repeated pattern in a specific amount of time we have labelled

as a year. However, our solar system hosts a myriad of celestial bodies, including seven other planets and

over a million asteroids within the Asteroid Belt, each following its unique orbital path.

Observing from Earth, we discern celestial motion against two principal planes. The first, the equatorial

plane, slices through Earth’s midsection along the equator, forming a fundamental reference for tracking

celestial objects. In contrast, the ecliptic plane mirrors Earth’s orbital path around the Sun, providing an

additional viewpoint for studying cosmic phenomena. We see everything from the equatorial plane due to

the tilt Earth’s axis sits on so we need to apply calculations to find our positions in the ecliptic plane.

1.1. Keplarian Orbital Parameters

Keplerian orbital paths are defined by six physical parameters that fully characterize the trajectory of

an object. Two crucial parameters, the semi-major axis (a) and eccentricity (e), determine the shape of the

orbit. The semi-major axis signifies the mean distance traveled by the orbiting body, offering insight into the

– 2 –

orbit’s size. Meanwhile, eccentricity delineates the orbit’s shape, with a value of 0 indicating a perfect circle

and increasing values indicating more elliptical paths. In addition, a single time value known as the epoch

of perihelion (τ) serves as the temporal reference point for our calculations, enabling precise determination

of the object’s position at any given time.

Given that we exist in a three-dimensional space, three rotational angles are essential to define the

object’s orientation. These angles include inclination (i), longitude of ascending node (Ω), and argument of

perihelion (ω). Inclination represents the vertical angle from the reference plane, akin to observing the horizon

on Earth. The longitude of ascending node denotes the angle between the reference direction, typically the

vernal equinox, and the point where the orbit intersects the reference plane from below. Similarly, the

argument of perihelion signifies the angle between the ascending node and the orbit’s closest approach to

the Sun, measured within the orbital plane.

To determine these six parameters, we employ a set of equations detailed in Table 1. Armed with these

parameters, we aptly describe the Keplerian orbit of any celestial object orbiting the Sun. Refer to Section 7

for a visual representation of the three angle parameters in Figure 3, aiding in understanding their spatial

configuration and functionality.

Keplarian Parameter Equation Equation Number

Semi-Major Axis a = k2r
2k2−rv2 (1)

Eccentricity e =
√
1−

(
h2

ak2

)
(2)

Longitude of Ascending Node Ω = arctan
(

−hx

hy

)
(3)

Inclination i = arccos
(
hz

h

)
(4)

Epoch of Perihelion τ = t− M
n (5)

Argument of Perihelion ω = arccos
(

rx·cos(Ω)+ry·sin(Ω)
r

)
− ν (6)

Table 1:: This table holds the 6 important equations needed for finding the parameters of any Keplarian

orbit

1.2. Required Background

The goal of this lab is to apply Right Ascension and Declination positions to determine the Keplerian

motion of asteroid 26 Proserpina. To demonstrate the methodology’s efficacy, data from Table 4 is utilized to

analyze the orbital motion of Ceres, a dwarf planet in the Asteroid Belt. True anomaly of Ceres is derived by

calculating its mean anomaly (M) and eccentric anomaly (E), representing the mean motion and projection

onto a circular track, respectively. While Equation 7 directly correlates these values, their analytical solution

is unfeasible. Therefore, a Newtonian iteration using Equations 8 and 9 is employed to derive converging

solutions, as detailed in Section 7.2.2. Subsequently, the solved mean and eccentric anomalies facilitate the

determination of positions at various times, enabling a comprehensive visualization of Ceres’ trajectory.

– 3 –

M = E − e sin (E) (7)

En+1 = En +
Mi − (En − e sin (E))

1− e cosEn
(8)

Mi+1 = Mi +

√
k2

a3
δt (9)

After demonstrating the orbital motion using the six parameters, we proceed to analyze asteroid 26

Proserpina, which was previously observed in a lab experiment. In our prior report, we obtained the right

ascension and declination of the asteroid on January 20th, 21st, 23rd, and the 26th of 2012. The data

originates from the Jet Propulsion Lab at NASA (NASA 2024). By utilizing the observations from the first

three dates, we can determine the six parameters, enabling us to predict the position of the asteroid on the

fourth day and any day throughout the year. Given that the asteroid orbits the Sun, but our observations

are Earth-based, it’s crucial to establish the correlation between the positions of the Earth, Sun, and 26

Proserpina.

This process involves manipulating Cartesian vectors to represent the positions and distances between

the three celestial bodies, ultimately determining the distance between the Sun and the asteroid. We denote

the distance between the Sun and Proserpina as r⃗, while the distance from the Sun to Earth is R⃗, with

a magnitude of 1 AU. Similarly, the distance from Earth to the asteroid is denoted as ρ, also expressed

in astronomical units. Computing the distance values for r and ρ begins with identifying the directional

components of the vectors to facilitate vector addition.

Equation 10 depicts the conversion of right ascension (α) and declination (δ) values into Cartesian

coordinates, resulting in a unit vector, ŝeq, with a magnitude of 1. This conversion is performed for each

of the four observation dates. Subsequently, we need to adjust for Earth’s tilt of ϵ = 23.44°, applying the

transformation matrix detailed in Equation 11. This yields the unit vectors of the Earth directed towards

26 Proserpina for the four observation dates, all situated within the ecliptic plane.

xeq = cosα cos δ (10)

yeq = sinα cos δ

zeq = sin δ

ŝ =

x

y

z

 =

1 0 0

0 cos ϵ sin ϵ

0 − sin ϵ cos ϵ


xeq

yeq

zeq

 (11)

To proceed further, we will employ Laplace’s Method for orbit estimation, which relies on the vector

triangle formed by the vectors connecting the Earth to the Sun, the orbiting object, and the vector from the

Sun to the object. By iteratively differentiating, a sequence of equations was derived to determine the orbital

parameters. Utilizing Laplace’s method for asteroid motion prediction necessitates not only the unit vectors

from Earth to 26 Proserpina but also their first two time derivatives. Since there is no direct equation

available for obtaining the derivatives of the unit vectors, we resort to using the first three observations.

– 4 –

Through a Taylor Expansion, we solve for ŝ2, ˙̂s2, and ¨̂s2 using ŝ1 and ŝ3. Additionally, we require the Julian

dates for these observations to employ Equation 12, where τ1 = t2 − t1 and τ3 = t3 − t2.

ṡ2 =
τ3(s2 − s1)

τ1(τ1 + τ3)
+

τ1(s3 − s2)

τ3(τ1 + τ3)

s̈2 =
2(s3 − s2)

τ3(τ1 + τ3)
+

2(s2 − s1)

τ1(τ1 + τ3)
(12)

Subsequently, we must determine the value for ρ, but this is contingent upon knowing r. To ascertain

both values, we employ an iterative solving approach. Initially, we make an educated guess for r, then

compute ρ, which is subsequently utilized to refine the estimation of r. In cases where a viable orbit exists,

the value for ρ tends to converge, providing a reasonably accurate assessment of the Earth-asteroid distance.

Once ρ is established, the final value for r⃗ is obtained through simple vector addition of the vectors R⃗ and

ρŝ. The equations necessary for the iterative solving process are detailed in Equation 13. This iterative

procedure enables us to determine the rates of change of both ρ and r⃗, as delineated by the relations in

Equation 14.

ρ =k2
(

1

R3
− 1

r3

) ˙̂s · (R⃗× ŝ)
˙̂s · (¨̂s× ŝ)

, r =

√
ρ2 +R2 + 2ρR⃗ · ŝ (13)

ρ̇ =
k2

2

(
1

R3
− 1

r3

) ¨̂s · (R⃗× ŝ)
¨̂s · (˙̂s× ŝ)

, ˙⃗r =
˙⃗
R+ ρ ˙̂s+ ρ̇ŝ (14)

These calculations lead us to the final required values necessary for determining the six orbital pa-

rameters. First, we compute the specific angular momentum, which resembles the conventional angular

momentum but excludes the mass factor, yielding Equation 15. This equation aids in determining all three

angular parameters. Upon obtaining the semi-major axis and eccentricity, we proceed to calculate the

eccentric and mean anomaly to derive the true anomaly, ν, of the orbit. Initially, we solve for E using

Equation 16, then revert to Equation 7 to determine M . The true anomaly is then derived utilizing Equa-

tion 17, providing a description of the actual position of the orbiting body. Finally, in determining the epoch

of perihelion, we rely on Equation 18, derived from Kepler’s Third Law. Armed with the derived values

from the aforementioned steps, we possess all the necessary tools for calculating the values of the six orbital

parameters.

h⃗ = r⃗ × ˙⃗r (15)

E = arccos

(
a− r

ae

)
(16)

ν = 2arctan

[√
1 + e

1− e
tan

(
E

2

)]
(17)

n =
k2

a3
(18)

With all the parameters found, we then can find the position of 26 Proserpina which requires we use the

following equations listed in Equation 19 below. With all this we can find the radial distance r on that date

– 5 –

and coupled with the true anomaly we find the ecliptic then the equatorial coordinates which provides the

needed values for the right ascension and declination on any date with Equation 20

r = a (1− e cos (E)) , θ = ν + ω (19)

α = arctan

(
yeq
xeq

)
, δ = arcsin

(zeq
2

)
(20)

1.3. Uncertainty

The six Keplerian values are intricately interconnected, whereby influencing one parameter significantly

affects the other five. Consequently, directly propagating uncertainties becomes challenging, necessitating a

new statistical approach to ascertain uncertainties in our derived values. In this report, we endeavored to

employ the Monte Carlo Markov Chains method (MCMC), which integrates Markov Chains into the Monte

Carlo framework to generate random samples. Monte Carlo Markov Chains (MCMC) play a pivotal role

in simulating complex systems with random variables. By leveraging Markov Chains, MCMC generates

a sequence of states, each representing a sample of the system. It iteratively produces new states based

solely on the current state, gradually converging to a stationary distribution. Widely applied across diverse

scientific disciplines such as physics, biology, finance, and machine learning, MCMC proves particularly

valuable for addressing scenarios with numerous variables, where traditional analytical methods encounter

limitations. Recognized as a well-established method for handling uncertainty propagation in such contexts,

MCMC stands as our recommended approach for determining accuracy. The implementation of the MCMC

method is detailed in Section 7.2.4.

Collaborating with Umit Uzunboy, Maha Macknojia, Arvin Talwani, and Dilruba Yalcinakaya, this

report is organized into several sections, commencing with a concise elucidation of the dataset employed

in Section 2. Subsequently, Section 3 elucidates the methodology employed to determine the six orbital

parameters, followed by the analysis of our derived parameters and uncertainty evaluation in Section 4.

Section 5 encompasses the discussion of the obtained results and concludes our findings.

2. Data and Observations

Julian Date Right Ascension [deg] Declination [deg]

2455946.8 81.03 26.98

2455947.8 80.89 26.97

2455949.9 80.63 26.94

2455952.7 80.31 26.91

Table 2:: Over the four observed dates for 26 Proserpina, the following celestial positions are found. These

values come from the JPL Horizons Ephemeris and list the date in Julian Dates as well as the right ascension

and declination positions in degrees. With these values we can follow the listed process in this report to find

the path 26 Proserpina follows in space.

– 6 –

Data for this lab is gathered from the JPL Horizons ephemeris from NASA. This collection of information

is gathered from various missions conducted on ground and in space. This data base holds highly accurate

data on over 1 million asteroids including 26 Proserpina. Our selected days of observation are the same as

the previous Proserpina lab which determined the positions through plate solving. These days are listed in

Table 2 above and when comparing the calculated results to JPL Horizons, the difference is very minimal.

The data thus from the ephemeris is used in this report as they have better accuracy from advanced studies

on the asteroid. The camera used in imaging 26 Proserpina leaves a pixel error of 0.53 arc seconds so this is

the uncertainty we take for the above values.

3. Methodology

3.1. Ceres

As mentioned before, we want to show the use of the Keplarian parameters to describe the full path of

Ceres. When given the 6 values shown in Table 4 in the Appendix, the next step is to provide an estimate

of the motion in the ecliptic plane. In this plane we will not see the angles which describe the 3D position

but the shape of the orbit will be well known. From here it becomes easy to see the radial distance of the

orbiting body to the Sun. When iteratively solving for the mean and eccentric anomaly by using Equations 8

and 9 we find the motion. In the Data Analysis we look into the comparison of the true and the estimated

values.

3.2. 26 Proserpina Parameters

Our first step to determining Proserpina’s motion is to take our celestial coordinates and find the unit

vector s which points from Earth to the asteroid in Cartesian coordinates. We start by using Equation 10 to

find the vector in the equatorial plane. We need the position in the ecliptic plane to account for the tilt the

Earth sits at on its axis. Equation 11 is used to rotate our vector where the x-axis is held fixed and rotated

about by an angle ϵ = 23.44°. With this we find the unit vectors pointing from the Earth to Proserpina for

the 4 observation days.

The next step is to use the Equations 12 to determine s, ṡ, and s̈ for the second observation date. From

here, we needed to gather the position of the Earth with respect to the Sun on the dates we observed 26

Proserpina’s motion. By utilizing Python’s astropy.coordinates.get sun function and inputting the Julian

dates of our observations we are given the exact right ascension and declination the Sun was at in the sky.

Again Equation 10 is used and this gives S, the unit vector pointing from the Sun to the Earth.

Using the information we have collected, the next step is to find the distance Earth sits from Proserpina,

ρ. As stated before, ρ cannot be solved directly and instead we will work to get an approximation. There

are many methods that can be used to come to an answer and in this report we have chosen to work with an

iterative solve. We have two required relations of ρ and r which we use for the iteration listed as Equations 13.

We provide an initial guess of 1.1 AU for r and then plug this in to find a corresponding value for ρ. From

here we plug this ρ to find an updated value of r. Repeating this process 100 times leads to Figure 4

With these found values, ρ̇ can now be solved for from Equation 14 and then the next step is to find the

heliocentric vector and its time derivative to the asteroid. This can be found by adding the Sun-Earth vector

and the Earth-asteroid vector and then taking the derivative. This just uses the ρ magnitude multiplied

– 7 –

with the unit vector ŝ which we found earlier. We label this as r⃗helio to give our confirmed distance from

the Sun to 26 Proserpina.

Table 1 holds Equations 1 to 6 which provide the relations for all 6 of the Keplarian orbit parameters.

There is an order of steps to follow in order to determine the parameters of the Proserpina’s orbit. The

easiest to find is the semi-major axis since it does not relate to any other parameters. Next to find is the

argument of the perihelion which requires the specific angular momentum (⃗h) which is simply calculated by

Equation 15. From here we get the longitude of the ascending node with a similar looking calculation used

to also find inclination.

To find the eccentricity we now use Equation 2. From here we want the eccentric anomaly which is

found in Equation 16 relating the semi-major axis, eccentricity, and heliocentric distance together. The mean

anomaly is found from the eccentric anomaly with Equation 7. We quickly solve for the mean motion n

with Equation 18 which allows us to solve for our epoch of perihelion with Equation 5. Now using the mean

motion and anomaly alongside the Julian data of the second observation we find the true anomaly of the

orbit with Equation 17. Lastly a relation between Ω and ν is found in Equation 6 to give us the argument

of perihelion.

3.3. Uncertainty Calculations

The uncertainties are done in the MCMC method and we take small perturbations off the known

positions and find the parameter values these new values provide us. We take 1000 samples and then plot

them into histograms to show the uncertainty values they sit at. We only want to look at bounded orbits so

we are required to remove any iterations which do not follow that. We determine these by finding parameters

that do not make any physical sense and removing them before they can get added to the histogram. The

rest are then used to find the relative deviation off the center value which gives us the uncertainty in our

values. The histograms are found in the Appendix in Figure 6

3.4. Estimating Position on a 4th Epoch

Now with the 6 values we are able to find the position of 26 Proserpina at any given time. We plug in

our fourth observation day and find calculate the mean anomaly followed by the eccentric anomaly. This

allows us to find the radius and true anomaly associated with that day. Using our radius and then the polar

coordinate of the object using Equation 19, the ecliptic Cartesian coordinates are found and we convert these

into equatorial coordinates. Using Equation 20 we have the last required relations to find the right ascension

and declination.

4. Data Analysis

4.1. Analyzing the Ceres Parameter Estimation

When using the data in Table 4 to find the orbital motion of Ceres and plotting them we get the

following plots shown in Figures 1 and 5. There is differences noticeable through the estimated value and

this arises from the iterative solving being used. As we iterate more and more, small differences in parameter

– 8 –

values add up and quickly diverge from the known values. We see in that the values disperse but then do

shift back.

Fig. 1.—: This plot shows the motion of Ceres in the 2 dimensional orbital plane using the estimated and

the true values. Only the eccentricity, semi-major axis, and the epoch of perihelion are used as they define

the motion in the orbital plane. The remaining parameters are the angles which define the position of Ceres

in 3 dimensional space. Near the pericenter, both the estimated and true values follow closely but on the

opposite side it is clear that the difference in values creates a bigger difference in the two plots.

4.2. Determined Orbital Parameters of 26 Proserpina

Parameter Determined Value Real Value

a [AU] 2.57+0.07
−0.07 2.652

e 0.092+0.02
−0.02 0.087

Ω [degrees] 46.9+8.6
−12.0 45.9

i [degrees] 3.55+0.57
−0.57 3.56

τ [JD] 2455258+125
−131 2454868

ω [degrees] 210.9+15.9
−14.7 193.1

Table 3:: This table holds our found values for 26 Proserpina’s orbital parameters. The values appear to

be close to the values found by NASA (NASA 2024) and this tells us our program is a good estimate for

determining the orbital motion of not only 26 Proserpina but other orbiting objects as well.

– 9 –

Fig. 2.—: This plot shows the motion of 26 Proserpina in the 2 dimensional orbital plane using the estimated

and the true values. The paths follow close to one another and deviate by very small amounts and do align

again after one full rotation.

We present the following values for the parameters of Proserpina in Table 3, alongside the real values

determined by NASA. Notably, our determined values closely approximate those of NASA, which is encour-

aging. This alignment is particularly significant given our prior observations with Ceres plots, indicating

that even minor deviations can significantly alter the orbit path of any celestial body. Consequently, our

derived values offer an accurate depiction of the true orbit. However, it’s essential to acknowledge that over

extended periods, deviations may become more pronounced, leading to a decrease in accuracy as we move

away from our estimated value for the epoch of perihelion. Figure 2 illustrates the motion we’ve determined

for 26 Proserpina alongside its true motion. The discrepancy in pericenters suggests some disparities in our

analysis, potentially stemming from differences in values.

Some uncertainties, unfortunately, exceed our desired threshold. Specifically, the longitude of the as-

cending node exhibits the largest percent error at 26% of the found value. While the true values for all

parameters generally fall within the range we’ve calculated, there are exceptions. Firstly, the epoch of

perihelion deviates by approximately 400 days from the true value. This discrepancy likely explains the

differences in pericenter locations observed in Figure 2, as the epoch of perihelion specifies our reference

time. Additionally, the argument of perihelion slightly exceeds the calculated range. Since these two pa-

rameters are calculated last among the six, errors in the preceding four calculations may contribute to this

issue. Examining the histograms presented in the Appendix as Figure 6, we observe that the semi-major

axis and eccentricity exhibit relatively good fits, while the longitude of the ascending node and inclination

could benefit from further refinement. Notably, the plots for the epoch and argument of perihelion display

poor fits, with the τ histogram revealing two peaks, indicating errors in the parameter solving process.

– 10 –

4.3. 4th Epoch Values

The 4th epoch input provides us with a right ascension of 75.7°and a declination of 27.9°. Although

uncertainties in these values remain uncertain based on our parameters, we do note a deviation of approxi-

mately 5 degrees from the true values specified by NASA. This proximity suggests that while we possess some

estimation of the parameter’s location, it’s not sufficiently accurate for precise observations. Addressing the

source of these deviations is paramount for enhancing the utility of our calculation values in accurately de-

termining positions of orbiting bodies. Primarily, it appears that errors in our parameter calculations are the

likely culprit. Therefore, refining this process holds the best promise for achieving accurate measurements.

5. Discussion and Conclusion

While our current method for determining uncertainties is functional and yields valid errors for our

values, there’s certainly room for improvement in refining the Monte Carlo Markov Chain (MCMC) method.

The most effective approach would involve delving into the parameter-solving code and exploring avenues to

enhance its calculations. This endeavor would help mitigate larger errors stemming from smaller deviations,

thereby bolstering confidence in our results. It is advisable to allocate additional time to develop this function

for error propagation in this lab, as it would yield more robust answers. Furthermore, this process extends

beyond the confines of this particular scenario, proving beneficial in various scientific inquiries. Hence,

it is advantageous to delve deeper into studying and refining this method, ensuring readiness for future

applications. The attempted implementation of this code is elucidated in Appendix Section 7.2.4.

In addition to the iterative solving method for ρ, an alternative approach we could have explored is

utilizing the scipy.optimize function fsolve. This root-solving function, when applied to our functions, could

assist in pinpointing convergence points for the values of ρ and r. However, the implementation did not yield

the desired outcome during the course of this report, resulting in the return of the same inputted initial

value. Nonetheless, refining the implementation of this method may yield closer approximations for the two

values.

The primary objective of this lab is to determine the six parameters required to describe the position of

any orbiting object at any given time. This capability proves invaluable in numerous astronomical scenarios,

where scientists seek to observe specific celestial objects in the night sky. Events such as the appearance of

Halley’s comet and solar eclipses can be predicted based on knowledge of the orbits of each celestial body.

This process has been instrumental in initiating many scientific breakthroughs. For instance, Einstein’s

theory positing that light bends in the presence of gravity was corroborated by observing star positions

during total solar eclipses. Scientists were able to anticipate their observation opportunities by accurately

calculating the Moon’s position over time. The combined knowledge of the Sun’s distance from the Earth

and the Earth’s distance from the object furnishes us with sufficient information to predict the object’s

appearance on any given day.

6. Bibliography

REFERENCES

NASA. 2024, Small-body database lookup

– 11 –

7. Appendix

7.1. Extra Figures

Fig. 3.—: The above picture is useful for providing a visual to the 3 angular parameters as it can be visually

difficult to put an image to them. The orbital plane is in the path that the observed object follows while the

plane of reference is where the Earth and Sun sit as they go around one another.

a Ω i e ω τ

[AU] [deg] [deg] [deg] [Julian Day]

True 2.766 80.72 10.61 0.079 73.12 2454868

Estimated 2.946 80.65 10.56 0.125 63.20 2454833

Error -0.18 0.07 0.05 -0.05 9.9 35

Table 4:: Provided from the Lab document we are provided with the following orbital parameters for Ceres’

orbit. Using the values found we can see how estimated values and the true values compare when measuring

the orbital path of a moving body.

This preprint was prepared with the AAS LATEX macros v5.0.

– 12 –

Fig. 4.—: The above plots show the change in the values for (a) ρ and (b) r over the 100 iterations. They

both converge to a singular value which we can take to be the approximate value for both

Fig. 5.—: The two plots show (a) radial distance Ceres is from the Sun and (b) the true anomaly. By using

the parameters given from Table 4 to determine the motion we see how the estimates although off by no

more than

– 13 –

Fig. 6.—: The histograms of each parameter is shown above. The red lines represent where the found value

is and the spread depicts how close the 1000 iterations sat in relation to that value. The semi-major axis and

eccentricity appear well and the middle row is alright but the bottom row depict very weak uncertainties.

7.2. Python Functions

7.2.1. Newton Iterator

This function performs the Newtonian iteration to find the mean and eccentric anomaly when provided

with the orbital parameters of the object.

1 def newton_iterator(k, e, a, tau , dt = 0.01):

2 """

3 Performs Newtonian iteration on the given parameters to find the eccentric and mean

anomaly of orbit

4 :param k: constant with value of 0.0172

5 :param e: eccentricity of orbit

6 :param a: semi major axis of orbit

– 14 –

7 :param tau: epoch of perihelion

8 :param dt: time step

9 :return: eccentric anomaly array , mean anomaly array , associated times

10 """

11

12 # Initialize arrays

13 t = np.arange(tau , tau + 2500, dt , dtype=float)

14 E = np.zeros_like(t, dtype=float)

15 M = np.zeros_like(t, dtype=float)

16

17 # Initial values

18 i = 0

19

20 # Iterate over and over to find the converging values for E and M

21 while i < len(t) - 1:

22 E[i + 1] = E[i] + (M[i] - E[i] + e * np.sin(E[i])) / (1 - e * np.cos(E[i]))

23 M[i + 1] = M[i] + np.sqrt((k ** 2) / (a ** 3)) * dt

24 i = i + 1

25

26 return E, M, t

7.2.2. Parameter Solving

The following code goes through the process of taking the Julian dates and the associated right ascension

and declination in degrees to find the 6 orbital parameters. First is the iteration function which iterated 100

times to find the converging values for ρ and r looking for their convergence. The second function is the full

solve function which utilizes that iteration to find the parameter values.

1

2 def iterative_rho(r, R, k, s, s_dot , s_ddot , N):

3 """

4 Iteravley solve for rho by setting an initial r value and finding the associated rho

value , using that rho to

5 find a new r we can loop this process over and over to find where the values converge.

If they do not then we would

6 have an unbounded orbit where the object is moving away from Earth never to return.

7

8 :param r: input distance from Sun to orbiting object

9 :param R: Position vector of Sun from Earth

10 :param k: k constant

11 :param s: unit vector from Earth to object

12 :param s_dot: first time derivative of s

13 :param s_ddot: second time derivative of s

14 :param N: Number of iterations to go through

15 :return: arrays containing the interated r and rho values found

16 """

17 # Initialize the lists

18 rho_list , r_list = [], []

19

20 # Find magnitude of the R vector

21 R_mag = np.linalg.norm(R)

22

23 # Iteravley solve for rho by finding r then using that to find rho and keep looping

until the values converge

24 for i in range(0, N):

– 15 –

25 denom = np.dot(s_dot , np.cross(s_ddot , s))

26 rho = k ** 2 * (1 / R_mag ** 3 - 1 / r ** 3) * (np.dot(s_dot , np.cross(R, s))) /

denom

27 rho_list.append(rho)

28

29 r = np.sqrt(rho**2 + R_mag **2 + 2*rho*np.dot(R, s))

30 r_list.append(r)

31

32 return np.array(r_list), np.array(rho_list)

33

34 def full_solve(jd, ra , dec):

35

36 Compute all 6 orbital parameters of an orbiting object given at least 3 observation

dates and the corresponding right

37 asencsion and declination

38 """

39 :param jd: array holding the dates of observation is Julian Days

40 :param ra: array holding right ascension values in radians

41 :param dec: array holding declination values in radians

42 :reutrn: 6 orbital parameters in the following order:

43 semi -major axis , eccentricity , inclination , longitude from ascending node ,

44 argument of perihelion , epoch of perihelion

45 """

46

47

48 x_eq = cos(dec) * cos(ra)

49 y_eq = sin(ra) * cos(dec)

50 z_eq = sin(dec)

51

52 """ Using Equations 61 from the lab document to find the cartesian equatorial positions.

"""

53

54 # Equatorial unit vector

55 s_eq = np.array ([x_eq , y_eq , z_eq])

56

57 # Next Equation 62/63 is used to rotate the positions of the equitorial frame to

Proserpinas plane of orbit

58 eps = np.radians (23.43929111)

59 T = np.array ([[1, 0, 0], [0, cos(eps), sin(eps)], [0, -sin(eps), cos(eps)]])

60

61 # Get the s unit vector for Proserpinas movement. A good check is to see if the

magnitude equals to 1

62 s = np.dot(T, s_eq)

63

64 ## Finding the first and second time derivates of s

65

66 # First we get the s unit vectors separately for the first , second and third measurement

67 s1 = s.T[0]

68 s2 = s.T[1]

69 s3 = s.T[2]

70

71 # Calculate the first and second time derivatives for s by using this function

72 s2_dot , s2_ddot = pf.taylor_expand(jd, s1, s2 , s3)

73

74 # Collected the Julian day time of the first observation of Proserpina

75

76 # Convert the julian day into an astropy Time object

77 obs_time = Time(jd, format="jd")

– 16 –

78

79 # Get the solar coordinates at the observing times

80 solar_coordinates = get_sun(obs_time)

81 solar_ra = solar_coordinates.ra.deg

82 solar_dec = solar_coordinates.dec.deg

83

84 # Using Eq 61 we convert the celestial coordinates into equatorial coordinates

85 ra_sun = np.deg2rad(solar_ra)

86 dec_sun = np.deg2rad(solar_dec)

87

88 X, Y, Z = pf.celestial_to_equatorial(ra_sun , dec_sun)

89 S_eq = -np.array ([X, Y, Z])

90

91 # Using the T epsilon matrix from before , we find the S unit vector in the eccliptic

plane

92 S = np.dot(T, S_eq)

93

94 S1 = S.T[0]

95 S2 = S.T[1]

96 S3 = S.T[2]

97

98 ## Now we work to find r , ρ and $\dot{\rho}$
99

100 # We first need the k constant found on Page 2 of the lab document

101 k = np.sqrt(const.G * const.M_sun).to(u.AU ** (3 / 2) / u.day).value

102 R = S2

103 r = 1.1 # Initial guess of r

104

105 rerpina = 1.1

106 N = 50

107 rs = []

108 rhos = []

109

110 for i in range(N):

111 rho = pf.rho_from_r(S2 , r, s2 , s2_dot , s2_ddot , k)

112 rhos.append(rho)

113 r = pf.r_from_rho(rho , S2, s2)

114 rs.append(r)

115

116

117 # Now with our rho value , we find r using R as well in Equation 48

118 R_mag = np.linalg.norm(R)

119

120 # Then using Equation 49, we can find drho/dt

121 denom = np.dot(s2_ddot , np.cross(s2_dot , s2))

122 rho_dot = (k ** 2) / 2 * (1 / R_mag ** (3) - 1 / r ** (3)) * (np.dot(s2_ddot , np.cross(R

, s2)) / denom)

123

124 ## Now we must find r in the heliocentric position and \dot{r} as well

125

126 # First using Equation 41 we can find the heliocentric position

127 r_helio = R + rho * s2

128

129 # We use Equation 50 again to find the first time derivative for R. The second time

derivative is not needed

130 R_dot , _ = pf.taylor_expand(jd , S1 , S2, S3)

131

132 # We now use Equation 46 to find the first time derivative of r

– 17 –

133 r_dot = R_dot + rho * s2_dot + rho_dot * s2

134

135 ## Now we are going to find the Keplarian Orbital elements

136

137 r_vec = r_helio

138

139 # First we use Equation 51 to find the semi major axis

140 # Eq 51: At the midpoint of our three asteroid observations we know the magnitude

141 # of the radius vector , r, and the total velocity , V.

142 r_mag = np.linalg.norm(r_vec)

143 V_mag = np.linalg.norm(r_dot)

144

145 # Semimajor axis

146 a = (k ** 2 * r_mag) / (2 * k ** 2 - r_mag * V_mag ** 2)

147

148 # Eq 5: Compute h the specific angular momentum

149 h = np.cross(r_vec , r_dot)

150

151 # Eq 54: Get Omega

152 omega = np.arctan(-h[0] / h[1])

153

154 # Eq 55: Get i

155 h_mag = np.linalg.norm(h)

156 inclination = np.arccos(h[2] / h_mag)

157

158 # Eq 56: Get e

159 eccentricity = np.sqrt(1 - ((h_mag ** 2) / (a * k ** 2)))

160

161 # Eq 57: Get eccentric anomaly , the first few lines here help with the sign issue

162 theta = np.arccos(r_vec [2] / r_mag)

163 phi = np.arctan2(r_vec [1], r_vec [0])

164 e_r = np.array ([np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi), np.cos(theta)

])

165 v_r = np.dot(r_dot , e_r)

166 ecc_anomaly = (np.arccos ((a - r_mag) / (a * eccentricity)) * np.sign(v_r))

167 # Eq 25: Get the mean anomaly

168 mean_anomaly = -(ecc_anomaly - eccentricity * sin(ecc_anomaly))

169

170 # Get Mean Motion

171 n = np.sqrt((k ** 2) / a ** 3)

172

173 # Eq 26: Get tau

174 tau = jd[1] - mean_anomaly / n

175

176 # Orbital period

177 p = 2 * pi / n

178

179 # Eq 31: True Anomaly

180 true_anomaly = 2 * np.arctan ((np.sqrt ((1 + eccentricity) / (1 - eccentricity))) * np.tan

(ecc_anomaly / 2))

181

182 # Eq 58: Get Argument of Perihelion

183 arg_perihelion = np.arccos ((s2[0] * cos(omega) + s2[1] * sin(omega)) / r_mag) -

true_anomaly

184

185 return np.array([a, eccentricity , inclination , omega , arg_perihelion , tau])

– 18 –

7.2.3. Finding Position on Future Date

Here we can use the found parameters to then find the right ascension and declination of the asteroid

given any date.

1 def get_ra_dec(params , t):

2

3 """

4 Calcualte the position of the object based on the epoch and the 6 orbital parameters

5 :param params: array of length 6 holding the parameters of the orbiting body

6 :param t: time to determine position at

7 :return: right ascension and declination in degrees

8 """

9

10 a, e, i, omega , arg_perihelion , tau = params

11

12 # Gather mean anomaly and iteravly solve for the eccentric anomaly

13 mean_anomaly = n * (t - tau)

14 ecc_anomaly = mean_anomaly

15 for j in range (100):

16 ecc_anomaly = ecc_anomaly + (mean_anomaly - ecc_anomaly + eccentricity * np.sin(

ecc_anomaly)) / (1 - eccentricity * np.cos(ecc_anomaly))

17

18 # Use the eccentric anomaly and eccentricity to determine position and true aniomaly

19 r = a * (1 - e * np.cos(ecc_anomaly))

20 nu = 2 * np.arctan(np.sqrt ((1 + e) / (1 - e)) * np.tan(ecc_anomaly / 2))

21 theta_epoch = nu + arg_perihelion

22

23 # Find the x, y, z positions first in ecliptic then convert to equatorial frame

24 x = r * (cos(omega) * cos(theta_epoch) - sin(omega) * cos(inclination) * sin(theta_epoch

))

25 y = r * (sin(omega) * cos(theta_epoch) + cos(omega) * cos(inclination) * sin(theta_epoch

))

26 z = r * np.sin(inclination) * np.sin(theta_epoch)

27

28 x_eq = x

29 y_eq = y * np.cos(epsilon) - z * np.sin(epsilon)

30 z_eq = y * np.sin(epsilon) + z * np.cos(epsilon)

31

32 r_eq = [x_eq , y_eq , z_eq]

33

34 # Find the right ascension and declination

35 ra = np.arctan(y_eq / x_eq)

36 dec = np.arcsin(z_eq / 2)

37

38 return np.rad2deg(ra), np.rad2deg(dec)

7.2.4. Uncertainty Propagation with Monte Carlo Makrov Chain

This code performs the MCMC calculations on our parameters to find their uncertainties

1 """ Perturb our inputs to our asteroid """

2 np.random.seed (1003)

3 NUM_ARCSEC = 0.53

4 position_err_deg = NUM_ARCSEC /3600

5

– 19 –

6 trial_ra = ra_deg + np.random.normal(0, position_err_deg , len(ra_deg))

7 trial_dec = dec_deg + np.random.normal(0, position_err_deg , len(dec_deg))

8

9 trial_solution = mf.full_solve(jd , np.radians(trial_ra), np.radians(trial_dec))

10

11 """ print ("\ nSemi Major Axis: {:.2f}". format(trial_solution [0]))

12 print(" Eccentricity: {:.3f}". format(trial_solution [1]))

13 print(" Inclination: {:.2f}". format(trial_solution [2]))

14 print("Angle to Periapsis: {:.2f}". format(trial_solution [3]))

15 print('Argument of Perihelion {:.2f}'.format(trial_solution [4]))
16 print("Time of Perihelion: {:.2f}". format(trial_solution [5]))"""

17

18 N = 1000

19 mc_solutions = np.empty((N, 6))

20 for i in range(N):

21 trial_ra = ra_deg + np.random.normal(0, position_err_deg , len(ra_deg))

22 trial_dec = dec_deg + np.random.normal(0, position_err_deg , len(dec_deg))

23 mc_solutions[i,:] = mf.full_solve(jd, np.radians(trial_ra), np.radians(trial_dec))

24

25 a_filter = (mc_solutions [:, 0] > 0.1) & (mc_solutions [:, 0] < 10)

26 # peri_filter = (mc_solutions [:,3] > 1.25) & (mc_solutions [:,3] < 1.5)

27

28 _filter = a_filter

29

30 mc_solutions [:, 4] = mc_solutions [:, 4] % 2 * np.pi

31

32 print(f"Number of closed orbit {np.sum(_filter)}")

33 parameters_labels = ["Semi Major Axis", "Eccentricity",

34 "Inclination", "Angle to Periapsis",

35 "Argument of Perihelion", 'Time of Perihelion ']
36

37 #true_values = [2.766 , 0.079, np.deg2rad (10.61) , np.deg2rad (80.72) , np.deg2rad (73.12) ,

2454868.0]

38

39 """ for i in range (6):

40 param = mc_solutions[_filter , i]

41 plt.figure(figsize =(12, 5))

42 plt.hist(param.flatten (), bins='fd', histtype='step ', color='k ')
43 plt.axvline(x=true_values[i], color='red ', linestyle='--')
44 plt.xlabel(parameters_labels[i], size =16)

45 plt.ylabel ("Count", size =16)

46 plt.yscale('log ')"""
47 #plt.show()

48

49 import corner

50 _range = []

51 for i in range (6):

52 param = mc_solutions[_filter ,i]

53 _range.append ((np.percentile(param ,1),np.percentile(param ,99)))

54

55 import emcee

56

57 def gauss_lk(x, mu, sigma):

58 N = x.size

59 return -0.5 * N * np.log(2 * np.pi) - N * np.log(sigma) - 0.5 * np.sum(((x - mu) /

sigma) ** 2)

60

61 def lk_input(p):

– 20 –

62 mu = np.hstack ((ra_deg , dec_deg))

63 #Here we are setting the measurement error on our inputs

64 NUM_ARCSEC_ERR = 0.5

65 sigma = 1/3600 * NUM_ARCSEC_ERR

66 return sum([gauss_lk(p[i], mu[i], sigma) for i in range(p.size)])

67

68 def lk_prior(p):

69 """

70 Here we are setting some reasonable estimates for how what we think the output should

looks like

71 These can come from previous experiments , other kinds of prior knowlede , here I just

used the known truth

72 Values with some massive errorbars and assumed gaussian probability around that point.

73 """

74 mu = np.array ([2.766 , 0.079, np.deg2rad (10.61) , np.deg2rad (80.72) , np.deg2rad (73.12)

,2454868.0])

75 sigma = [mu[0]*0.5 , 0.05, np.pi/12, np.pi/2, np.pi/2, np.pi/2, 365]

76 lk = sum([gauss_lk(p[i], mu[i], sigma[i]) for i in range(p.size)])

77 return lk

78

79 def lnprob(p):

80 x = mf.full_solve(jd, p[:3],p[-3:])

81 #Throw out unbound orbits

82 if x[0] == -1:

83 return -np.inf

84 return lk_input(p) + lk_prior(x)

85

86 nwalkers = 250

87 ndim = 6

88 p0 = np.empty((nwalkers , ndim))

89 for i in range(nwalkers):

90 p0[i,:] = np.hstack ((ra_deg , dec_deg)) + np.random.normal(0, 1/3600 * 0.25 ,6)

91 # print(lnprob(np.hstack ((lamdba_ceres + 1,beta_ceres))))

92 sampler = emcee.EnsembleSampler(nwalkers , ndim , lnprob)

93

94 print("Running burn -in...")

95 p0, _, _ = sampler.run_mcmc(p0 , 100)

96 sampler.reset ()

97

98 niter = 200

99 print("Running production ...")

100 pos , prob , state = sampler.run_mcmc(p0 , niter)

101

102 print(np.mean(sampler.acceptance_fraction))

103 for j in range (6):

104 for i in range(sampler.chain.shape [0]):

105 plt.plot(sampler.chain[i,:,j], color = 'k', alpha = 0.2)

106 plt.show()

	Introduction
	Keplarian Orbital Parameters
	Required Background
	Uncertainty

	Data and Observations
	Methodology
	Ceres
	26 Proserpina Parameters
	Uncertainty Calculations
	Estimating Position on a 4th Epoch

	Data Analysis
	Analyzing the Ceres Parameter Estimation
	Determined Orbital Parameters of 26 Proserpina
	4th Epoch Values

	Discussion and Conclusion
	Bibliography
	Appendix
	Extra Figures
	Python Functions
	Newton Iterator
	Parameter Solving
	Finding Position on Future Date
	Uncertainty Propagation with Monte Carlo Makrov Chain

